Shoulder Range of Motion Deficits in Baseball Players With an Ulnar Collateral Ligament Tear

J. Craig Garrison, Mollie A. Cole, John E. Conway, Michael J. Macko, Charles Thigpen and Ellen Shanley

DOI: 10.1177/0363546512459175

The online version of this article can be found at:
http://ajs.sagepub.com/content/40/11/2597
Shoulder Range of Motion Deficits in Baseball Players With an Ulnar Collateral Ligament Tear

J. Craig Garrison,† PhD, PT, ATC, SCS, Mollie A. Cole,† MEd, MAT, ATC, John E. Conway,‡ MD, Michael J. Macko,‡ PT, DPT, OCS, MTC, Charles Thigpen,∥ PhD, PT, ATC, and Ellen Shanley,∥ PhD, PT, OCS, CSCS

Investigation performed at Texas Health Ben Hogan Sports Medicine, Fort Worth, Texas

Background: Shoulder range of motion (ROM) deficits are associated with elbow injury in baseball players.

Purpose: To compare the ROM characteristics of baseball players with a diagnosed ulnar collateral ligament (UCL) tear with those of a group of age-, activity-, and position-matched healthy controls.

Study Design: Cross-sectional study; Level of evidence, 3.

Methods: Sixty male competitive high school and collegiate baseball players participated. Thirty athletes (age [mean ± standard deviation], 18.20 ± 1.56 years) with a diagnosed UCL tear were compared with 30 (age, 18.57 ± 0.86 years) age-, activity-, and position-matched players without a UCL injury. Of the 60 participants, there were 44 pitchers, 4 catchers, 5 infielders, and 7 outfielders. Participants were measured for shoulder internal rotation (IR), external rotation (ER), and horizontal adduction (HA) at 90° of shoulder elevation. Participants were also measured for elbow extension in a seated position. Group comparisons were made between participants with and without a UCL injury using independent t tests with an α level set at P < .05. All measurements were taken bilaterally, and the differences (involved to uninvolved) were used to calculate means for all variables, including glenohumeral internal rotation deficit (GIRD), total rotational motion (TRM), HA, and elbow extension.

Results: Baseball players with a UCL tear (UCLInj) exhibited significantly greater deficits in TRM compared with the control group of healthy baseball players (NUCLInj) (UCLInjPitch = 112.04° ± 14.35°, NUCLInjPitch = 121.85° ± 9.46°; P = .007) and dominant shoulder ER (UCLInjPitch = 121.85° ± 9.46°, NUCLInjPitch = 121.85° ± 9.46°; P = .007) than pitchers without a UCL tear. No group differences were present for GIRD (UCLInj = –12.53° ± 5.98°, NUCLInj = –13.63° ± 5.40°; P = .476), HA (UCLInjPitch = –3.00° ± 5.01°, NUCLInjPitch = –3.23° ± 5.15°; P = .860), or elbow extension (UCLInjPitch = –2.63° ± 7.86°, NUCLInjPitch = –1.17° ± 2.76°; P = .339). Pitchers with a UCL tear had significantly greater deficits in TRM (UCLInjPitch = –6.96° ± 11.20°, NUCLInjPitch = 1.29° ± 8.33°; P = .007) and dominant shoulder ER (UCLInjPitch = 121.04° ± 14.35°, NUCLInjPitch = 121.85° ± 9.46°; P = .011) than pitchers without a UCL tear.

Conclusion: A deficit in TRM is associated with a UCL tear in baseball players. Although GIRD may be prevalent in throwers, it may not be associated with a UCL injury. When examining ROM in baseball players, it is important to assess both TRM and GIRD.

Keywords: total rotational motion; overhead athlete; GIRD; UCL

Baseball players frequently exhibit an increase in shoulder external rotation (ER) and a decrease in shoulder internal rotation (IR) while maintaining the total arc of motion of the glenohumeral joint in their throwing arm.13,20 This has been reported as an adaptation to the exceptionally high demands placed on the shoulder during the overhead throwing motion.20 There is an excessive torque placed on the glenohumeral joint at maximum ER to counter the IR velocity generated from the throw.6,26 Because of the repetition of this motion, a baseball pitcher typically displays an increased amount of glenohumeral ER.26

In baseball players with an injury, there is an associated alteration in arm range of motion (ROM). Preseason deficits in shoulder IR greater than 25° and in total rotational motion (TRM) greater than 5° have been shown to increase injury risk in high school and professional baseball players.23,26 This deficit in IR greater than 20° in the throwing shoulder has been defined by Burkhart et al4 as a glenohumeral internal rotation deficit (GIRD). Other studies describe GIRD as the loss of IR of the throwing arm in comparison with the nonthrowing arm.5,9,13,17 While GIRD has been documented in the dominant shoulder of throwers,2,26 it has also been suggested to be pathological and associated with shoulder and elbow injuries.5,14 In a retrospective case-control study, Dines et al5 found an increase in GIRD in baseball players diagnosed with ulnar collateral ligament (UCL) deficiency.
when compared with healthy baseball players. This study was one of the first to establish the potential relationship between injury to the UCL and deficits in shoulder IR of the dominant arm.

The TRM has been described as the amount of combined shoulder ER and IR at 90° of abduction. This motion is thought to be clinically important in regard to the overall health of the throwing shoulder in baseball players. Wilk et al suggested that the TRM in the throwing shoulder of baseball pitchers should be within 5° of the nonthrowing shoulder to decrease the risk of injury. Likewise, in professional baseball pitchers with more than 5° TRM difference, there was a 2.5-times greater risk of shoulder injury. These results imply that TRM needs to be considered in the evaluation and treatment of shoulder injuries in baseball players; however, it is unclear what role this may play in UCL injuries.

While previous studies have examined associations between UCL injuries and GIRD, as well as shoulder injuries and TRM deficits, to our knowledge, no prior studies have examined the relationship between a UCL tear and TRM loss. The purpose of this study was to compare the ROM characteristics of baseball players with a diagnosed UCL tear to a group of age-, activity-, and position-matched healthy controls. Our hypothesis was that baseball players with a UCL tear would have (1) a greater GIRD and (2) a deficit in overall TRM on their throwing shoulder when compared with their nonthrowing shoulder.

MATERIALS AND METHODS

Participants

This was a prospective case-control study. Sixty male competitive high school and collegiate baseball players volunteered to participate in our study. Participants reported playing baseball for an average of 14.03 years (range, 9-16 years). Table 1 summarizes the complete demographic characteristics of the participants. Thirty participants (age [mean ± standard deviation], 18.20 ± 1.56 years) with a diagnosis of a UCL tear of their throwing arm were compared with 30 age-, activity-, and position-matched players without a UCL injury. Participants for the control group were recruited from local high schools and colleges. The diagnosis of a UCL injury was made based upon clinical examination by a board-certified orthopaedic surgeon (J.E.C.) and magnetic resonance imaging (MRI) results. Of the 60 participants, 44 were pitchers, 4 were catchers, 5 were infielders, and 7 were outfielders. Patients were identified during regularly scheduled visits to the participating physician (J.E.C.) and/or physical therapists (J.C.G., M.J.M.). For both the UCL group and control group, patients were considered for study participation if they were a baseball player between the ages of 15 and 25 years. Inclusion criteria for the UCL tear group included the following: (1) the athlete’s ability to throw was affected by the injury, (2) the athlete was unable to continue participating in baseball at the level before the

TABLE 1	Participant Demographic and Range of Motion Characteristics for the Overall Studya		
	Control Group (n = 30)	UCL Tear Group (n = 30)	P Value
Age, y	18.57 ± 0.86	18.20 ± 1.56	.265
Dominant limb, n (%)			
Right	27 (90.0)	26 (86.7)	.694
Left	3 (10.0)	4 (13.3)	
Years of experience	14.05 ± 1.30	14.0 ± 4.93	.957
Position, n (%)			
Pitcher	21 (70.0)	23 (76.7)	.719
Catcher	2 (6.7)	2 (6.7)	
Infielder	4 (13.3)	1 (3.3)	
Outfielder	3 (10.0)	4 (13.3)	
Level of play, n (%)			.612
College	13 (43.3)	15 (50)	
High school	17 (56.6)	15 (50)	
Dominant shoulder, deg			
ER	119.70 ± 11.77	113.30 ± 13.95	.060
IR	20.9 ± 6.08	29.83 ± 7.31	.000p
Nondominant shoulder, deg			
ER	105.13 ± 10.58	107.43 ± 15.51	.505
IR	34.53 ± 5.88	42.36 ± 8.82	.476
GIRD, deg	–13.63 ± 5.90	–12.53 ± 5.98	.476
Total rotational motion difference, deg			.009p
Horizontal adduction difference, deg	–3.23 ± 5.15	–3.00 ± 5.01	.860
Elbow extension difference, deg	–1.17 ± 2.76	–2.63 ± 7.86	.339

aValues are expressed as mean ± standard deviation unless otherwise indicated. UCL, ulnar collateral ligament; ER, external rotation; IR, internal rotation; GIRD, glenohumeral internal rotation deficit.

bDenotes statistical significance at the P < .05 level.
UCL tear, (3) clinical examination results were positive for a UCL tear, (4) there was confirmation of a UCL diagnosis via MRI, and (5) the athlete was attempting to return to his sport at a competitive level.

Exclusion criteria were (1) a previous UCL reconstruction that failed, (2) a previous shoulder surgery for labral or rotator cuff involvement, and (3) if the patient did not plan to return to baseball after treatment. If, after a patient was enrolled, it was discovered that he was experiencing one of the previously listed conditions, then he was removed from data collection. The same exclusion criteria were applied to the control participants.

Patients were included into the study by an investigator in the outpatient sports medicine facility once they were confirmed to meet the inclusion and exclusion criteria. Once a patient was consented into the study, objective measurements were taken on his shoulder and elbow during the initial evaluation. The Institutional Review Board of Texas Health Resources approved the research procedures.

Testing

With UCL participants, ROM testing was performed at their initial visit to the outpatient sports medicine facility. All control participants were measured before their fall season using the same methods as the UCL group. Measurements were taken by 3 physical therapists and 1 athletic trainer; however, 1 person (J.C.G.) stabilized the scapula for each of the shoulder measurements to ensure consistency. Before testing, reliability standards were established in pilot testing among those participating in measurements for shoulder IR (intraclass correlation coefficient [ICC]2,k = .97; standard error of the mean [SEM] = 1.6), ER (ICC2,k = .97; SEM = 1.51), horizontal adduction (HA) (ICC2,k = .96; SEM = 1.36), and elbow extension (ICC2,k = .97; SEM = 1.00) and were found to be acceptable. Bilateral IR and ER, HA, and bilateral elbow extension were measured in each participant. The shoulder ROM measurement methods utilized have been previously described in the literature.28 For glenohumeral joint ER, the participant was positioned supine with the arm elevated to 90° of abduction and in the scapular plane. The scapula was stabilized by the therapist, and the arm was taken to the end of available ROM of the glenohumeral joint. This was defined as the point before the participant’s scapula moved under the stabilizing hand. Measurements were taken using a bubble goniometer with the stationary arm of the goniometer parallel to the longitudinal axis of the radius, pointing toward the greater tuberosity of the humerus; the axis at the lateral epicondyle of the humerus and the moving arm was parallel to the longitudinal axis of the radius, pointing toward the styloid process of the radius.

For this study, GIRD was defined as a deficit of IR of the throwing arm in relation to the nonthrowing arm and was calculated for both groups. Likewise, TRM was determined based on the combination of shoulder ER and IR of the participant’s throwing arm in comparison with the nonthrowing arm. This method has been described in earlier studies.26,27 Elbow extension and HA were measured as the total available ROM at both the elbow and shoulder of the throwing arm compared with the nonthrowing arm. Side-to-side differences for GIRD, TRM, HA, and elbow extension were then calculated in each group and used for analysis.

Data Analysis

A priori statistical power analysis was performed using TRM deficit as the primary outcome and determined that a total of 40 (20 in the control group and 20 in the UCL tear group) patients would be needed to detect statistical significance based upon an 80% power calculation. Independent t tests were used to determine significant differences between the means of GIRD, TRM, HA, dominant shoulder ER, and elbow extension in both the UCL and control groups with significance set at P < .05. Likewise, subgroup analyses consisted of pitchers with a UCL injury versus pitchers without a UCL injury and baseball players with a UCL injury who went on to surgery compared with those who were able to rehabilitate without surgery.

RESULTS

The participants with a UCL tear (UCLInj) exhibited significantly greater deficits in TRM compared with the control group of healthy baseball players (NUCLInj) (UCLInj = −6.67° ± 11.82°, NUCLInj = 0.93° ± 9.91°; P = .0091). No group differences were present for GIRD (UCLInj = −12.53° ± 5.98°, NUCLInj = −13.63° ± 5.90°; P = .4761), HA side-to-side difference (UCLInj = −3.00° ± 5.01°, NUCLInj = −3.23° ± 5.15°; P = .860), dominant shoulder ER (UCLInj = 113.30° ± 13.95°, NUCLInj = 119.70° ± 11.77°; P = .060), or elbow extension side-to-side difference (UCLInj = −2.63° ± 7.86°, NUCLInj = −1.17° ± 2.76°; P = .339).

When only pitchers with a UCL injury (UCLInjPitch; n = 23) were compared with pitchers without a UCL injury (NUCLInjPitch; n = 21), there was a significant difference in TRM (UCLInjPitch = −6.96° ± 11.20°, NUCLInjPitch = 1.29° ± 8.33°; P = .0087) and dominant shoulder ER (UCLInjPitch = 112.04° ± 14.35°, NUCLInjPitch =
Similar to the overall group findings, there were no significant differences in GIRD (UCLInjPitch = 12.26° ± 6.08°; NUCLInjPitch = 13.76° ± 6.41°; *P* = .4302), HA side-to-side difference (UCLInjPitch = 2.30° ± 3.36°; NUCLInjPitch = 3.71° ± 3.68°; *P* = .1911), or elbow extension side-to-side difference (UCLInjPitch = 2.30° ± 5.59°; NUCLInjPitch = 0.67° ± 2.04°; *P* = .1102) in pitcher groups. Table 2 outlines the findings for the subset of pitchers in the study.

Of the 30 baseball players with a UCL tear, 18 went on to have surgery to reconstruct the ligament. There were no significant differences in dominant shoulder ER, GIRD, TRM, HA, or elbow extension between surgery (UCLInjSurg) and nonsurgery (UCLInjNSurg) groups (Table 3).

DISCUSSION

Baseball players with UCL tears in this study displayed a deficit in TRM when compared with a group of age-, activity-, and position-matched healthy baseball players. These results are similar to previous findings of loss of TRM in baseball players with UCL insufficiency and in professional baseball players who suffered a shoulder injury. When professional pitchers had a deficit in TRM greater than 5°, they were 2.5 times more likely to sustain an injury to the shoulder. In our study, all baseball players with a UCL injury exhibited a mean deficit of 6.67° of TRM on the throwing arm, which is outside the proposed acceptable range of 5° or less of TRM loss. In comparison, the healthy controls in our study were well within (0.93°) the acceptable range of TRM loss. As a subset, pitchers in our study who had suffered a UCL injury also had a deficit of TRM when compared with pitchers without injury. Likewise, a previous study in baseball players diagnosed with UCL insufficiency revealed a deficit of TRM; however, this was a comparison of the injured dominant shoulder to the dominant shoulder of the control group. While the Wilk et al study observed the relationship between discrepancies of shoulder motion and injuries at
a different joint (shoulder) and in a different population (professional baseball players), the significant deficits of TRM in these studies suggest that this variable should be considered when looking at injuries in baseball players. Interestingly, our study does not show a difference in GIRD in relation to age-, activity-, and position-matched controls for the whole group, the subset of pitchers, or the surgery group. Preseason deficits in IR have been shown to increase arm injury risk and are associated in retrospective studies with overhead throwers with internal impingement, professional pitchers with a history of shoulder injury, and injured high school baseball players. In addition, baseball players with a UCL injury displayed increased GIRD when compared with a healthy control group. Moreover, the Dines et al study contained a combination of professional, college, and high school players, while our study was made up of only college- and high school–level players. Although the lack of difference in GIRD between the UCLInj and NUCLInj groups may seem counterintuitive, previous data on uninjured baseball players have demonstrated similar measurements of GIRD at the high school (15°), college (12.7°), and professional (11.6°) levels. Likewise, there were differences in measurement techniques employed during the testing procedures, which could explain some of the discrepancies in the findings. Testing in the Dines et al study included standard goniometric measurements based on earlier descriptions of motion assessment for the shoulder; however, we used a manual scapular stabilization technique, which positioned the shoulder in the scapular plane of motion and has previously been shown to be a reliable method. This technique restricts scapular movement in an attempt to isolate available glenohumeral joint motion and, as such, may account for some of the differences between our study and the Dines et al study. While GIRD in preseason has been shown to increase injury risk, in our sample, it was not associated with UCL tears. Nevertheless, deficits in TRM were present in these players.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Control Group (n = 21)</th>
<th>UCL-Injured Group (n = 23)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>18.71 ± 0.90</td>
<td>18.26 ± 1.18</td>
<td>.165</td>
</tr>
<tr>
<td>ER</td>
<td>121.85 ± 9.46</td>
<td>112.04 ± 14.35</td>
<td>.011b</td>
</tr>
<tr>
<td>IR</td>
<td>20.61 ± 5.97</td>
<td>30.73 ± 7.58</td>
<td>.000b</td>
</tr>
<tr>
<td>Nondominant shoulder, deg</td>
<td>106.81 ± 11.23</td>
<td>106.73 ± 17.17</td>
<td>.987</td>
</tr>
<tr>
<td>ER</td>
<td>34.38 ± 6.52</td>
<td>43.00 ± 9.67</td>
<td>.001b</td>
</tr>
<tr>
<td>GIRD, deg</td>
<td>–13.76 ± 6.41</td>
<td>–12.26 ± 6.08</td>
<td>.430</td>
</tr>
<tr>
<td>Total rotational motion difference, deg</td>
<td>1.29 ± 8.33</td>
<td>–6.96 ± 11.20</td>
<td>.009b</td>
</tr>
<tr>
<td>Horizontal adduction difference, deg</td>
<td>–3.71 ± 3.68</td>
<td>–2.30 ± 3.36</td>
<td>.191</td>
</tr>
<tr>
<td>Elbow extension difference, deg</td>
<td>–0.67 ± 2.04</td>
<td>–2.78 ± 5.59</td>
<td>.110</td>
</tr>
</tbody>
</table>

*aValues are expressed as mean ± standard deviation. UCL, ulnar collateral ligament; ER, external rotation; IR, internal rotation; GIRD, glenohumeral internal rotation deficit.

*bDenotes statistical significance at the P < .05 level.

Table 3

<table>
<thead>
<tr>
<th></th>
<th>UCL-Injured Group Without Surgery (n = 12)</th>
<th>UCL-Injured Group With Surgery (n = 18)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>17.50 ± 1.98</td>
<td>18.66 ± 1.02</td>
<td>.043b</td>
</tr>
<tr>
<td>ER</td>
<td>116.0 ± 14.46</td>
<td>112.0 ± 13.72</td>
<td>.396</td>
</tr>
<tr>
<td>IR</td>
<td>30.0 ± 5.54</td>
<td>29.72 ± 8.45</td>
<td>.921</td>
</tr>
<tr>
<td>Nondominant shoulder, deg</td>
<td>112.08 ± 10.57</td>
<td>104.33 ± 17.68</td>
<td>.185</td>
</tr>
<tr>
<td>ER</td>
<td>42.25 ± 7.10</td>
<td>42.44 ± 10.01</td>
<td>.954</td>
</tr>
<tr>
<td>GIRD, deg</td>
<td>–12.25 ± 6.51</td>
<td>–12.72 ± 5.77</td>
<td>.836</td>
</tr>
<tr>
<td>Total rotational motion difference, deg</td>
<td>–8.33 ± 10.33</td>
<td>–5.55 ± 12.88</td>
<td>.538</td>
</tr>
<tr>
<td>Horizontal adduction difference, deg</td>
<td>–2.58 ± 4.25</td>
<td>–3.28 ± 5.56</td>
<td>.717</td>
</tr>
<tr>
<td>Elbow extension difference, deg</td>
<td>–2.83 ± 6.29</td>
<td>–2.50 ± 8.93</td>
<td>.912</td>
</tr>
</tbody>
</table>

*aValues are expressed as mean ± standard deviation. UCL, ulnar collateral ligament; ER, external rotation; IR, internal rotation; GIRD, glenohumeral internal rotation deficit.

*bDenotes statistical significance at the P < .05 level.

Vol. 40, No. 11, 2012

ROM of Baseball Players With UCL Tear
A deficit in TRM in this study appears to be associated with a deficit in dominant shoulder ER in those players with a UCL injury. Although dominant shoulder ER deficit was not statistically significant for the total group of baseball players ($P = .060$), there was a trend toward this being a significant finding. In the same way, when the subset of pitchers was compared, a deficit in dominant shoulder ER was found ($P = .011$) in those with a UCL injury ($112.04^\circ \pm 14.35^\circ$) when evaluated against healthy pitchers ($121.85^\circ \pm 9.46^\circ$). These results are different than those of both Dines et al and Wilk et al, in which a deficit in TRM was attributed to a deficit in IR of the dominant shoulder. In the Shanley et al. study, baseball players who were injured (shoulder and elbow) had less ER on their dominant shoulder when compared with the dominant shoulder of uninjured baseball players; however, the difference was not significant. This trend in deficits in ER of the dominant shoulder in our study suggests that there could be an underlying mechanism.

Increased magnitudes of shoulder ER have been suggested to be potentially injurious to the elbow. In the throwing motion, a greater degree of shoulder ER is associated with increased valgus torque at the elbow. Because the UCL is thought to provide an inherent varus restraint to high valgus elbow torques experienced during the late cocking phase, it is likely that this structure may be injured at this point. As such, it is plausible that baseball players with a UCL injury in this study have experienced neuromuscular adaptive changes to minimize stresses across the elbow. In a study examining the effect of throwing mechanics on valgus load at the elbow, maximum shoulder ER was significantly correlated with elbow valgus torque. As such, the authors suggested that one biomechanical condition of reducing this valgus load across the elbow was to reduce shoulder ER. Although we did not evaluate the throwing motion of the participants in this study, it is possible that those athletes with a UCL injury gradually developed a loss of shoulder ER as a means of minimizing valgus stress at the elbow.

A deficit of shoulder HA is often considered to be a potential risk factor for injury in baseball players. This is believed to be caused by posterior shoulder tightness often experienced by overhead-throwing athletes. In our study, we found no differences in side-to-side differences in HA between UCLInj and NUCLInj groups. These results are in contrast to Shanley et al, who showed a 17° side-to-side difference in HA between those with injured shoulders and those without injury. However, this preseason HA deficit did not exhibit an association with an increased injury risk to the shoulder or elbow. In contrast, Myers et al showed a relationship between posterior shoulder tightness and internal impingement in overhead-throwing athletes; however, the side-lying technique used in their study differs from the method we used in which the participant was positioned supine with the scapula stabilized. Posterior shoulder tightness has been suggested as a possible contributing factor to shoulder injury. Theoretically, even though a deficit of HA may affect the kinetic chain with decreased shoulder IR and subsequent stresses across the elbow, it has not been directly connected to the development of UCL injury. Elbow extension loss of the dominant arm is thought to be a common finding in baseball players. As throwing increases throughout the season and across the career of a player, dominant arm elbow extension decreases when compared to the nondominant arm. These changes are attributed to musculotendinous adaptations from high load eccentric muscle contractions. The consequences, however, are not fully understood in regard to the relationship with injury at the elbow. In this study, the UCLInj group ($–2.63^\circ \pm 7.86^\circ$) had slightly greater loss of elbow extension of the dominant arm when compared with the NUCLInj group ($–1.17^\circ \pm 2.76^\circ$), but the difference was not statistically significant. These results appear to be consistent with the loss of dominant arm elbow extension in professional baseball players, however, the implications for UCL injury are still unknown.

For the subset of those UCL-injured baseball players in this study, 18 required surgery for UCL reconstruction, while the other 12 were able to rehabilitate without surgery. Although there were no differences in ROM measurements of the shoulder and elbow in these 2 groups, there was a difference in age ($UCLInjNSurg = 17.50 \pm 1.98, UCLInjSurg = 18.66 \pm 1.02$). It is unlikely that the slightly younger mean age of the nonsurgery group contributed to their ability to avoid surgery at the time of this study. The factors that determine whether a baseball player with a UCL tear is able to undergo rehabilitation instead of surgery are multifactorial in nature and are not easily predicted. Although there is some evidence that signal intensity of MRI may be useful in predicting outcome, that discussion is beyond the scope of this article.

Limitations

In previous studies that have examined TRM deficit in the throwing arm, the losses have been attributed to a decrease in dominant arm IR. In this study, there was not a significant difference in GIRD between the UCLInj and NUCLInj groups, which suggests that differences in TRM are coming from a loss in ER of the dominant arm. This finding is different than that of the Dines et al study in which differences in GIRD accounted for TRM deficit. From a clinical standpoint, a TRM deficit of 6.67° may not seem like much and could be construed as an error measurement. For this reason, we tried to ensure consistency with our measurements through training, reliability testing, and using only 1 person (J.C.G.) to stabilize the shoulder with each participant. In addition, it is more than likely that it is not the specific number of the TRM deficit but rather the recognition of changes or differences in ER of the throwing shoulder which may help the clinician to identify those with a UCL injury.

It is also important to consider the time of year and season when each of these participants was measured. The fact that ROM of the shoulder can vary within 24 hours of throwing must be taken into account. For the UCLInj group, none of the participants had thrown within 24 hours of evaluation, and most had taken a break from throwing because of their injury. The exact throwing patterns of the NUCLInj group are not clear; however, an effort was made to ensure that no participant threw before testing. Previous research suggests that baseball players experience adaptations of increased shoulder ER and decreased

Note: The document text is presented as is, without any further context or analysis beyond what is visible in the image.
shoulder IR8,18 with throwing. This would suggest that “in-
season” throwers would have greater shoulder ER than
during the “off-season” when not as much throwing is
occurring. Because all of our control measurements
were taken during the fall (off-season) and before the fall season
had even started, the possible differences in the timing of
measurements between groups should have been mini-
mized and thus, in our opinion, was not responsible for
the differences in TRM. Finally, similar to the Dines
et al9 study, we used a mixture of position players and
pitchers, which could potentially influence the ROM find-
ings, although pitchers in our study demonstrated compara-
ble findings at the shoulder and elbow.

CONCLUSION

There was a statistically significant difference in shoulder
TRM in UCLInj baseball players compared with NUCLInj
players. Clinically, recognition of a deficit in TRM may be
an important factor in identifying those players with UCL
injuries. Although GIRD was not found to be significantly
different between the 2 groups, it was present in both
groups and should not be ignored as a potential risk factor
for injury. Similarly, loss of dominant arm elbow extension
does not appear to be related to injury to the UCL in base-
ball players, but the implications are still unclear. Findings
of dominant shoulder deficit of TRM in baseball players
with a UCL injury in this study are in a specific age group
of high school and college baseball players and may not nec-
essarily translate to a younger or older population.

ACKNOWLEDGMENT

The authors acknowledge Heather Powell and the staff
physical therapists at Texas Health Ben Hogan Sports
Medicine for their assistance in this study.

REFERENCES

1. Aguinaido AL, Chambers H. Correlation of throwing mechanics with
2. Anloague PA, Spees V, Smith J, Herbernick MA, Rubino J. Glenohum-
eral range of motion and lower extremity flexibility in collegiate-level
3. Anz AW, Bushnell BD, Griffin LP, Noonan TJ, Torry MR, Hawkins RJ.
Correlation of torque and elbow injury in professional baseball pitch-
4. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder:
spectrum of pathology. Part I: pathoanatomy and biomechanics.
5. Dines JS, Frank JB, Akerman M, Yocum LA. Glenohumeral internal
6. Ellenbecker TS, Roetert E, Ballie DS, Davies GJ, Brown SW. Gleno-
humeral joint total rotation range of motion in elite tennis players and
7. Fleisig GS, Andrews JR, Dillman C, Escamilla RF. Kinetics of baseball
1995;23:233-239.
in major league pitchers: changes over the playing season. Sports Health.
2011;3(1):97-104.
KR. A profile of glenohumeral internal and external rotation motion in
the uninjured high school baseball pitcher, part I: motion. J Athl Train.
10. Kibler WB, Chandler TJ, Livingston BP, Roetert EP. Shoulder range of
of ulnar collateral ligament injury in baseball players: value for pre-
12. Lauderhof KG, Stanek JM, Meister K. Assessing posterior shoulder
contracture: the reliability and validity of measuring glenohumeral
Rotational motion changes in the glenohumeral joint of the adoles-
14. Myers JB, Laudner KG, Pasquale MR, Bradley JP, Lephart SM. Gleno-
humeral range of motion deficits and posterior shoulder tightness
15. Norkin CC, White DJ. Measurement of Joint Motion: A Guide to
16. Proseke U, Morgan DL. Muscle damage from eccentric exercise:
mechanisms, mechanical signs, adaptations, and clinical applica-
K. Humeral retroversion and its relationship to glenohumeral rotation
eb passive range of motion after pitching in professional baseball
19. Roetert E, Ellenbecker TS, Brown SW. Shoulder internal and external
rotation range of motion in nationally ranked junior tennis players: a
20. Ruotolo C, Price E, Panchal A. Loss of total arc of motion in collegiate
youth baseball pitchers: a biomechanical study. J Shoulder Elbow
ations among hip and shoulder range of motion and shoulder injury
23. Shelton E, Rauh MJ, Michener LA, Ellenbecker TS, Garrison JC,
Thigpen CA. Shoulder range of motion measures as risk factors for
shoulder and elbow injuries in high school softball and baseball play-
24. Tyler TF, Roy T, Nicholas SJ, Gleim GW. Reliability and validity of a
new method of measuring posterior shoulder tightness. J Orthop
25. Werner SL, Fleisig GS, Dillman CJ, Andrews JR. Biomechanics of the
internal rotation deficit and total rotational motion to shoulder injuries
335.
27. Wilk KE, Meister K, Andrews JR. Current concepts in the rehabilita-
28. Wilk KE, Reinold MM, Macrina LC, et al. Glenohumeral internal rota-
tion measurements differ depending on stabilization techniques.
29. Wright RW, Steger-May K, Wasserlauf BL, O’Neal ME, Weinberg BW,
Paletta GA. Elbow range of motion in professional baseball pitchers.